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Abstract. The initial mixed boundary value problem for equations of hyper-
bolic type is considered. It is solved by algorithms ”random walk on spheres”,
”random walk on balls” and ”random walk on lattices” of Monte Carlo meth-
ods and by probability difference methods.
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1. Introduction

We consider in bounded closed domain Ω ∈ Rn, (n = 2, 3) with boundary ∂Ω and
for t ∈ (0, T ) the initial mixed boundary value problem

∂2
t u(t, x)−∆xu(t, x) + γ2u(t, x) = f(t, x), (t, x) ∈ Ω× (0, T ), (1.1)

u(0, x) = ϕ(x), x ∈ Ω, (1.2)

∂tu(0, x) = ψ(x), x ∈ Ω, (1.3)

α(t, x)u(t, x) + β(t, x)
∂u(t, x)

∂n
= g(t, x), (t, x) ∈ ∂Ω× (0, T ), (1.4)

where γ is parameter, f(t, x), ϕ(x), ψ(x), α(t, x), β(t, x), g(t, x) are defined func-
tions, n is normal to ∂Ω. [1], [2], [3]. In monograph [1] the initial value problem
for equation (1.1) considered. In AIP Conference Preceedings [2] the mixed prob-
lem for elliptic equation by Monte Carlo and by probability difference methods is
solved. In article [3] the initial Neumann boundary value problem for parabolic
type equation by algorithm ”random walk” of Monte Carlo methods is solved.
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The initial mixed boundary value problem (1.1) – (1.4) after discretization
only on time variable t for n = 3 with approximation error O(τ2) for equation
(1.1), we have:

ui+1(x)− 2ui(x) + ui−1(x)

τ2
−∆ui+1(x) + γ2ui+1(x) = f i(x), (1.5)

i = 1, 2, . . . ,M − 1, τ =
T

M
, x ∈ Ω,

u0(x) = ϕ(x), x ∈ Ω, (1.6)

u1(x)− u0(x)

τ
= ψ(x), x ∈ Ω, (1.7)

αi+1(x)ui+1(x) + βi+1(x)
∂ui+1(x)

∂n
= gi+1(x), i = 1, 2, . . . ,M − 1, x ∈ Ω. (1.8)

Or

Lui+1(x) = F i
(
f i(x), ui−1(x), ui(x)

)
, i = 1, 2, . . . ,M − 1, x ∈ Ω, (1.9)

αi+1(x)ui+1(x)+βi+1(x)
∂ui+1(x)

∂n
= gi+1(x), i = 1, 2, . . . ,M−1, x ∈ Ω, (1.10)

where L ≡
(
∆− τ2γ2

)
is elliptic (Helmholtz) operator.

2. Monte Carlo methods

The main idea of the Monte Carlo methods: we construct the probability value
or the probability process in such way that the mean value is the solution of the
given problem. Then, as rule, the variance is the precision of the solution. From
problems (1.9), 1.10) to exist integral equation second type

u(x) =

∫
Ω

k(y, x)u(y)dy + v(x), x, y ∈ Ω, (2.1)

where v(x) is given function, k(y, x) is kernel also given function. The integral
equation (2.1) can be is solved Monte Carlo methods, if the integral operator Kof
this equation satisfies the condition

‖K‖L1(Ω) < 1. (2.2)

It the condition (1.10) holds then the integral equation (2.1) can be solved by
”random walk on spheres” and ”random walk on balls ” algorithm of Monte Carlo
methods, also it is possible to construct the ε–displaced estimations for u(x), [4],
[2], [5], [6], [9], [10].

Is solved by algorithms ”random walk on spheres” and ”random walk on
lattices”, [2], [5], [6], of Monte Carlo methods and probability difference methods.
[11].

Let ∂Ω be a Lyapunov surface, the surface Ω be convex. Then the norm of
the integral operator acting in C(Ω) less than 1. Hence, it is possible to apply
Neumann–Ulam scheme to the equation (1.9). [9].
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The integral equation (2.1) is solved ”random walk on spheres” and by
”random walk on balls” algorithm of Monte Carlo methods. [10]. By reaching

ε–boundary Markov chain reflected with the probability p∂Ωε = |βi+1(x)|
|αi+1(x)|+|βi+1(x)|

and adsorbed with the probability q∂Ωε
= |αi+1(x)|
|αi+1(x)|+|βi+1(x)| .

At transition from one condition to the following condition the ”weight” of
node, that is defined by the recurrence relation

Q0 = 1, Qi+1 = Qi
k(xi, xi+1)

pΩ(xi, xi+1)
, i = 0, 1, . . . ,

is taken into account. On a border the ”weight” of border proportional

Q∂Ω =
gi+1(x)

|αi+1(x)|+ |βi+1(x)|
is taken into account.

Let us denote by h a step of the difference scheme in each coordinate direction
and by ei coordinate unit vector in i-th coordinate direction. We approximate the
domain Ω and operator L by finite difference method. ph(x, x ± eih), ph(x, x +
eih ± ejh), ph(x, x − eih ± ejh) and ph(x, y) = 0 for the others x, y ∈ Ω ∈ Rnh .
Function ph(x, y) is nonnegative, the sum on y is equal 1 for each x. This means
that ph(x, y) is the probability of transitions of some Markov chain that we denote
by
{
ξhn
}

. ph(x, y) will be coefficients in finite difference approximation.

3. Probability difference method

We’ll divide a discrete border into the reflecting ∂ΩhR and the absorbing ∂ΩhA, then
it is possible to construct the ε–displaced approximation of the unique decision in
the point x. For example, it is possible to construct Markov chain by ”random
walk on lattices” and to define

{
ξhn
}

along this chain.

Let the set ∂ΩhR approximate ∂Ω ”from within”. That is either x ∈ Ω
⋂
R3
h

or x ∈ ∂Ω or straight line connecting x with one of the nearest node xi±eih, xi±
eih±ejh or xi±eih∓ejh touches ∂Ω. The set is determined in Ω

⋂
R3
h. Let’s define

digitization Ωh = Ω
⋂
R3
h − ∂ΩhR of interior Ω and digitization of a stopping set

∂ΩhA = R3
h−Ωh−∂ΩhR. Then ph gives transitive probabilities of the approximating

chain
{
ξhi
}

in Ωh. The chain breaks at the first contact with ∂ΩhA. Let’s notice

that Ex

{
ξhn+1 − ξhn| ξhn = yi ∈ ∂ΩhR

}
= υ(y)h/|υ(y)|. It is coordinated that the

reflection from the point ∂ΩhR happens along direction υ(y). υ(y) is the direction
of hit into interior node. [2], [5], [6], [11].

After approximation of domains Ω, ∂Ω and (1.9), (1.10) we receive the prob-
lem by finite difference method

Lhui+1
h = F ih

(
f ih, u

i−1
h , uih

)
, (3.1)

αi+1
h ui+1

h + βi+1
h δh

(
ui+1
h

)
= gi+1

h , (3.2)
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where Lh is finite difference approximation of the operator L, δh is finite difference
approximation of the operator ∂

∂n .

Theorem 1. It is easy to prove that to finite difference mixed problem (3.1) – (3.2)
the Neumann–Ulam scheme is applicable.

Proof. Let’s consider difference problem (1.5) – (1.7) and approximate it by x. We
prove the Theorem for case Ω ∈ R1 ≡ [0, 1]. Then with step h = 1/N by x we
divide [0, 1] on N parts. Then we derive the following finite-difference problem for
k = 1, ..., N − 1

h2ui+1
k − 2h2ui+1

k + h2ui−1
k − τ2ui+1

k+1 + 2τ2ui+1
k − τ2ui+1

k−1 + h2τ2γ2ui+1
k = h2τ2f ik.

(3.3)
First order of approximation ∂tu(x, 0) is O(τ2). For that we use the following
obvious equalities: ∂τu(x, 0) = du(x, 0)/dt = ψ(x) t = 0, u(x, 0) = u0(x) = ϕ(x)
and

∂τu(x, 0) =
du(x, 0)

dt
=
u(x, τ)− u(x, 0)

τ
= ∂tu(x, 0) +

τ

2
∂2
t u(x, 0) +O(τ2). (3.4)

From (1.1) when t = 0 and using first initial condition we get:

∂2
t u(x, 0) = ∂2

xu(x, 0)− γ2u(x, 0) + f(x, 0) =
d2ϕ(x)

dx2
− γ2ϕ(x) + f(x, 0). (3.5)

Now from (3.5) we derive

τ

2
∂2
t u(x, 0) =

τ

2

(d2ϕ(x)

dx2
− γ2ϕ(x) + f(x, 0)

)
. (3.6)

Expression τ∂2
t u(x, 0)/2 from (3.6) we put in (3.4), and get

∂τu(x, 0)− τ

2

(d2ϕ(x)

dx2
− γ2ϕ(x) + f(x, 0)

)
= ∂τu(x, 0) +O(τ2).

Hence

∂τu(x, 0) ≈ u1
k − u0

k

τ
= ψk +

τ

2

(ϕk+1 − 2ϕk + ϕk−1

h2
− γ2ϕk + fk

)
+O(τ2)

or

u1
k = ϕk + τψk +

τ

2

(ϕk+1 − 2ϕk + ϕk−1

h2
− γ2ϕk + fk

)
+O(τ2) (3.7)

Thus, we show, that ∂tu(x, 0) (second initial condition) also is approximated with
accuracy of O(τ2). Finite-difference equation (3.7) with boundary condition (1.8)
on every time layer (i + 1) is solved by sweep method. Indeed, from (3.3) for
i = 1, 2, . . . ,M − 1, k = 1, 2, . . . , N − 1 we get

−τ2ui+1
k+1 +

(
2τ2 + h2 + h2τ2γ2

)
ui+1
k − τ2ui+1

k−1 = 2h2uik − h2ui−1
k + h2τ2f ik. (3.8)

Sufficient condition of convergent for sweep method of system (3.8) because the
inequality is true: |2τ2 +h2 +h2τ2γ2| > |− τ2|+ |− τ2|, where τ is step by time t,
τ > 0, h is step by space variable x, h > 0, and parameter γ2 > 0. Thus, solution of
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system (3.8) exists and it canbe solved numerically by sweep method. Now, (3.8)
is written for each (i+ 1) in matrix form

Au = F, (3.9)

where matrix A is with 3 diagonals: diagonal elements are 2τ2 + h2 + h2τ2γ2,
upper and lower diagonal elements are −τ2, the rest elements are zeros. Column
vector F is known because of right side of equation, initial and boundary conditions
F = F(uik, u

i−1
k , f ik), column vector u is unknown vector to be found. Solution of

system (3.9) one can be written in form:

u = A−1F. (3.10)

Reffering to work [7] we can write out all eigenvalues of matrix A:

λk
(
A
)

= 2τ2 + h2 + h2τ2γ2 − 2
√
τ2τ2 cos(kϑ), k = 1, 2, . . . , N, ϑ =

π

N + 1
.

If N � 1, then λk
(
A
)
≥ h2 + h2τ2γ2 > 0. From condition |λk

(
A
)
| < 1 we get

relationship between steps τ and h:

−
√

1− h2

hγ
< τ <

√
1− h2

hγ
.

When it is considered that τ > 0 and for γ > 0 we get the condition (Courant
type condition)

τ <

√
1− h2

hγ
. (3.11)

Analogous researches were done in work [8]. If condition (3.11) is true, then itera-
tional process for solution of system (3.9) (ex., Jacobi method) converges. Existing
of solution of system (3.9) (the same for system (3.8)), convergence of numerical
method of sweep (inversion of matrix A) for that system, as well as the discrete so-
lution are constructed on absorbing Markov’s chain, that terminates on ε-border,
since for (3.9) iterational process converges and (1.8) is true (that mixed boundary
condition (1.8) consists of two parts: Dirichlet’s and Neumann’s; due to Dirichlet’s
condition Markov’s chainis absorbed on ε-border, that is terminates. This proves
the usability of Neumann–Ulam’s scheme for solution of (3.8). This system can
be solved by ”random walk on lattices”, that is probability difference mathod.
Theorem is proved.

Now we prove usability of Neumann–Ulam’s scheme to (3.8) differently. For
that we write (3.8) on time layers (i+ 1) in form

ur = Kul + Φ, (3.12)

where K is two-diagonal matrix (operator): upper and lowe diagonal elements
are τ2/(2τ2 + h2 + h2τ2γ2); the rest elements are zeros, ur = ur(u

i+1
k ), ul =

ul(u
i+1
k+1,u

i+1
k−1), Φ = Φ

(
uik,u

i−1
k , f ik

)
. Now show that operator (matrix) K is com-

pressive operator. For that we calkulate the eigenvalues of matrix λk(K) of matrix



6 Kanat Shakenov

K, [7]:

λk
(
K
)

=
−2τ2

2τ2 + h2 + h2τ2γ2
cos(kϑ), k = 1, 2, . . . , N, ϑ =

π

N + 1
.

Easy to see, that for τ > 0, h > 0, γ2 > 0 condition for spectral radius of matrix
K

ρ
(
K
)
< 1 (3.13)

is true for any τ > 0 and h > 0. In that case iterational process (by k, where
k = 0 and for k = N boundary conditions are true) converges for (3.12) also,
condition (3.13) now is necessary and sufficient condition of convergence of itera-
tional process for (3.12). It means, that we can use scheme of Neumann–Ulam for
system (3.12), that is that system (and (3.8) also) might be solved by probability
difference methods: by constructing converging to ε-border the Markov’s chains
and all trajectories terminats on ε-border since on borders Dirichlet’s conditions
presence. Theorem is proved completely. �

Analogous algorithms can be found in works [8], [9], [10].
Algorithm of constructing of Markov’s chains from work [11] allows us to

construct Markov’s chains, and estimate discrete solution of system (3.8):

uh = Ex

[
Nh−1∑
i=0

Chi f
(
ξhi
)
4thi IΩh

(
ξhi
)

+ ChNh−1r
(
ξhNh

)
+

Nh−1∑
i=0

Chi

(
− g
(
ξhi
))
dµhi

]
is the unique discrete solution of the problem (the same discrete solution of problem
(3.1), (3.2)), where Ex is an expectation.

Remark 2. Common error of probability difference method depends on the follow-
ing parametres: 1) τ step by time t, τ > 0, as O(τ2) 2) h step by space variable x,
h > 0, as O(h2) 3) parameter γ2 > 0 and 4) it depends on ε-border linearly.
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